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a b s t r a c t

The problem of robust estimation and multivariate outlier detection of the term structure
of default intensity is considered. Both themultivariate Vasicek andCIRmodels, embedding
the Kalman filter algorithm in a forward search context, are used to estimate default
intensity. The focus is not on the estimation of credit models including jumps, but on the
automatic detection ofmaskedmultiple outliers inmultivariate time series. Both simulated
and real market credit spread time series are analyzed. In order to make inference
on outliers, confidence envelopes which are virtually independent of the estimated
parameters are introduced. The output is not only a unique default intensity term structure
curve, as often used in the financial literature, but a robust confidence intervalwithinwhich
default intensity is likely to stay.
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1. Introduction

Pricing default risk has received a lot of attention from both practitioners and researchers (see for example Amendola
et al., 2006; Fuertes and Kalotychou, 2006; Amendola et al., 2008). If, on the one hand, the standard theoretical paradigm is
the contingent claims of Merton (1974), who explicitly linked the risk of a firm’s default to the variability in the firm’s asset
value, on the other hand, the intensity approach has become very popular and widely used in practice.

The intensity approach has been pursued considering that at each instant there is some probability that a firm defaults
on its obligations. Both this probability and the recovery rate, in the event of default, may vary stochastically through time.
These stochastic processes determine the price of credit risk and, although they are not formally linked to the firm’s asset
value, there are presumably some underlying relations. This approach has been described as a reduced form model (Duffie
and Singleton, 1999) and is used throughout this paper.

Our research is focused on the definition of a procedure to detect maskedmultiple outliers or jumps in multivariate time
series and is applied to the term structure of default intensity. With regards to intensity estimation, we do not concentrate
on jump diffusion models, which have been extensively used in the most recent literature (Eckner, 2009), since our goal is
to detect jumps ormaskedmultiple outliers allowing the researcher to analyze, free frommasking and swamping problems,
the impact that each unit, outlier or not, exerts on the estimated model. We exploit both multifactor Vasicek and CIR
models which constitute the most popular paradigms in the context of term structure analysis. In order to estimate model
parameters we exploit the Kalman filter representation described by Duan and Simonato (1999).

Many approaches have been developed in statistics to detect atypical observations. Given that traditional deletion
methods, due to the well known masking effect, may not lead to the identification of the contaminated observations, the
forward search was proposed, originally in linear and nonlinear regression by Atkinson and Riani (2000), as a powerful
general method for detecting multiple masked outliers and for determining their effect on inferences about models fitted
to data. In the forward search the evolution of residuals, parameter estimates and inferences is monitored as the subset size
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increases. Results are presented as forward plots which show the evolution of the quantities of interest as a function of the
subset size.

In this paper we combine different lines of research in the context of term structure of default intensity and, for the first
time in the literature, we extend the forward search to multivariate Kalman filter time series analysis. According to our
knowledge this is the first attempt in the literature to try to estimate in a robust way default intensity. What makes the
forward search particularly appealing over other robust methods based on high breakdown point estimators in the context
of default intensity is the fact thatwe do not need to add additional iterative procedureswhichmay lead to non-convergence
or to find local minima, but we can simply use traditional maximum likelihood estimators andmonitor how these estimates
evolve as the subset increases.

We begin our data analysis on a simulated uncontaminated dataset, then we introduce contaminants and, stressing the
need to find theoretical boundaries for the inference on outliers, we check the effectiveness of our procedure exploiting
envelopes obtained through Monte Carlo simulations. As additional contribution to time series analysis, we consider the
fast procedure to obtain envelopes from order statistics (Riani et al., 2009). The final step of this research is to apply our
framework to real market time series. Our procedure allows us to obtain not only a term structure of default intensity, but
also a robust confidence interval in which intensity is likely to stay.

The paper is organized as follows. In Section 2 we describe the mechanics of default intensity estimation through the
Kalman filter. In Section 3 we describe the forward search for multivariate time series analysis. In Section 4 we apply our
technique to simulated uncontaminated and contaminated credit spread time series. In Section 5 we extend our approach
to real time series. Section 6 contains concluding remarks and directions for future research.

2. Default intensity estimation through the Kalman filter

In the financial literature, it is well known that, in a continuously compounded environment, at time 0, the price of a
default free zero coupon bond with maturity τ can be expressed as

V (τ ) = E

e−

 τ
0 R(u)du


, (1)

where R(·) is the risk free rate of interest and the expectation is taken over the possible paths of R(·).
According to Duffie and Singleton (1999), the reduced form pricing for a defaultable zero coupon bond Ṽ (τ ) can be

expressed as

Ṽ (τ ) = E

e−

 τ
0 R̃(u)du


= E


e−

 τ
0 [R(u)+λ(u)]du


, (2)

where λ(·) denotes the intensity of default.
Considering that the difference between the price of a defaultable zero coupon bond Ṽ (·) and a default free zero coupon

bond V (·) is due to the difference in their interest rates R̃(·) and R(·), following Geyer et al. (2001), we argue that default
intensity can be modeled through credit spreads Y (τ ) obtained as follows

Y (τ ) = R̃(τ )− R(τ ). (3)

There is a clear analogy between conventional models for the risk free interest rate term structure and the above
described structure. Given the convenience offered by analytical solution of the above equation and given that our goal is to
detect atypical observations, we avoid the direct inclusion of jumps into the model and we assume that the instantaneous
differential default intensity dY (t), in the Vasicek setting (Vasicek, 1977), can be modeled as follows

dY (t) = k(θ − Y (t))dt + σdW (t), (4)

or, using the CIR specification (Cox et al., 1985), as follows

dY (t) = k(θ − Y (t))dt + σ

Y (t)dW (t), (5)

whereW (t) is aWiener process, θ ≥ 0 is the long run average of instantaneous default intensity, k ≥ 0 is themean reverting
rate at which the process returns to its long run mean and σ ≥ 0 is the volatility parameter of the process.

Extending the approach of Duan and Simonato (1999) to credit spreads, we can state that

Y (τ ) =
1
τ
[B(·)Y (t)− ln(A(·))] , (6)

where A(·) and B(·) contain the parameters θ , k, σ and the risk premium parameter ν. The precise functional form of A(·)
and B(·)will be detailed when we describe the Kalman filter algorithm.

The stochastic differential equations above mentioned are specified in continuous time, but focusing on daily credit
spreads yt and concentrating on some nodes (maturity dates) of the term structure of default intensity, we need to
describe their evolution in a discrete time setting. In general, inference from discrete time observations can be based on
an approximation to the continuous-time likelihood, replacing Lebesgue integrals and Itô integrals by Riemann-Itô sums
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provided the observation times, as in our case, are closely spaced (see for example Yoshida, 1990). On the other hand, if the
time between observations is bounded away from 0 one should adjust the score function or, starting from the continuous-
time likelihood function, should modify appropriately the estimating equations as suggested in Bibby and Sørensen (1995).
Other alternative strategies are based on the Euler or Milstein scheme where, according to Bolder (2001), we can actually
solve the stochastic differential equations for yt and then discretize this solution. Following this latter scheme, once we
do the discretization, we conform our notation to that usually employed in state space analysis (Koopman et al., 1999) to
indicate the discretized measurement equation yt and the transition equation αt .

The general state space form is applied to a multivariate time series yt where, for each time t = 1, . . . , T , we consider N
observations. N is the number of nodes of the intensity curve on which credit spreads are observed.

The standard Kalman filter provides a recursive algorithm for computing the minimummean squared error estimator of
αt conditional on y1, . . . , yt−1, i.e.

at|t−1 = E(αt |y1, . . . , yt−1) = Ttat−1 + dt ,

and its mean squared error (MSE)

MSE(at|t−1) = E[(at|t−1 − αt)(at|t−1 − αt)
′
|y1, . . . , yt−1] = Pt|t−1.

More specifically, the Kalman filter is the set of recursions

υt = yt − ct − Ztat|t−1 Ft = ZtPt|t−1Z ′

t + GtG′

t
qt = qt−1 + υ ′

tF
−1
t υt Kt = (TtPt|t−1Z ′

t + HtG′

t)F
−1
t

at+1|t = Ttat|t−1 + dt + Ktυt Pt+1|t = TtPt|t−1T ′

t + HtH ′

t − KtFtK ′

t ,

(7)

with q0 = 0. The filter innovations (one step ahead prediction errors) are indicated by υt and their variance by Ft =

var(υt) = var{yt − E(yt |y1, . . . , yt−1)}. These two quantities form the necessary ingredients for the computation of the
likelihood

l(Θ̂) = −0.5NT · ln(2π)− 0.5
T

t=1


ln |Ft | + υ ′

tF
−1
t υt


. (8)

The multivariate state space form for Vasicek and CIR models with J factors has the following measurement equation

yt(τ1)
...

yt(τN)


  

yt

=


B1(τ1)

τ1
· · ·

BJ(τ1)

τ1
...

. . .
...

B1(τN)

τN
· · ·

BJ(τN)

τN


  

Zt

αt,1
...
αt,J


  

αt

−


A(τ1)
τ1
...

A(τN)
τN


  

ct

+

ηt,1...
ηt,N


  

Gt ϵt

, (9)

where τ(·) denotes the maturity (node of the term structure), and the functional forms for A(·) and B(·) can be formulated,
for the Vasicek model, as

A(τ ) =

J
j=1


γj(Bj(τ )− τ)

k2j
−
σ 2
j B

2
j (τ )

4kj


, (10)

Bj(τ ) =
1
kj

[1 − e−kjτ ], (11)

where

γj = k2j


θj −

σjνj

kj


−
σ 2
j

2
. (12)

On the other hand, for the CIR model we have

A(τ ) =

J
j=1

ln

 2γje
(γj+kj+νj)τ

2

(γj + kj + νj)(eγjτ − 1)+ 2γj


2kjθj
σ2j

, (13)

Bj(τ ) =
2(eγjτ − 1)

(γj + kj + νj)(eγjτ − 1)+ 2γj
, (14)

where

γj =


(kj + νj)2 + 2σ 2

j . (15)
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For both models, σj ≥ 0 is the volatility parameter of the process for the jth factor. The meaning of the other parameters
kj, θj and νj, referring to each of the J factors, has already been described below Eq. (6). A diagonal covariance structure for the
errors in the measurement equation GtG′

t is assumed in order to ensure the identification of model parameters and reduce
the complexity of Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization.

The transition equation is as followsαt+1,1
...

αt+1,J


  

αt+1

=


e−k1∆t 0 · · · 0

0 e−k2∆t
· · · 0

...
...

. . .
...

0 · · · · · · e−kJ∆t


  

Tt

αt,1
...
αt,J


  

αt

+

θ1(1 − e−k1∆t)
...

θJ(1 − e−kJ∆t)


  

dt

+

ψt,1
...
ψt,J


  

Ht ϵt

, (16)

where∆t , for daily observations, is conventionally assumed to be 1/250.
According to the Vasicek model specification, HtH ′

t is assumed to be diagonal, with jth diagonal element

HtH ′

t(j) =
σ 2
j

2kj
(1 − e−2kj∆t). (17)

In the case of the CIR model this matrix depends on a state space process with jth diagonal element

HtH ′

t(j) =
θjσ

2
j

2kj


1 − e−kj∆t2

+
σ 2
j

kj


e−kj∆t

− e−2kj∆tαt−1,j. (18)

In the next section we show how to apply the forward search to the above described Kalman filter.

3. The forward search for the multivariate Kalman filter

The forward search is made up of the following three main steps: initialization, progression and monitoring. The first
task is to find the appropriate starting subset of observations which is free from multiple masked outliers. In the time
series context the initial subset can be chosen among q blocks of contiguous observations of a predefined dimension b.
More precisely, to find the initial subset, we perform the search over all possible blocks and we choose the one that is
considered most compact according to a certain distance. It is interesting to notice that the choice of the initial subset does
not dramatically influence the search and, in particular, it does not affect the final stepswhere themost important findings of
the analysis are concentrated. The second step is the way we progress in the search. At each step we rank units according to
a specified distance continuing until all units are included in the subset. The third task is tomonitor some suitable quantities
along the search. In what follows we describe how these steps are performed.

1. Division of the dataset into q blocks. We split our time series in blocks and, in order to retain the dependence structure,
we include the first observation as the first unit of each initial subset. As pointed out in Riani (2004), the choice of the
number of blocks does not substantially effect the procedure. We define the number of units of each block according to
the pragmatic rule b ≈

√
T .

2. Likelihood estimation. We estimate the vector Θ̂Sm , where m indicates the subset size, computing the likelihood of Eq.
(8). We perform the Kalman filter estimation by using the Kalman gain if units belong to the subset, while we do not use
the Kalman gain for the other units (Harvey, 1989). For the initial subset we carry out the same estimation for each Sb
obtained from the division in q blocks above mentioned.

3. Squared Mahalanobis distances. After estimating the parameter vector Θ̂Sm , we compute the squared Mahalanobis
distances for each unit t as follows

dt,Sm = υ ′

tΣ
−1
Sm υt , (19)

where the matrixΣ−1
Sm is estimated as the inverse of

Σt∈Smυtυ
′
t

m − 1
. (20)

We calculate distances for all T units, but in order to estimate υt , we apply the Kalman gain only to the units belonging
to the subset.

4. Initial subset Sb∗. For each of the q blocks, we compute the median squaredMahalanobis distance. We choose as initial b-
dimensional subset, Sb∗, the onewith the lowestmedian. This is a generalization of the leastmedian of squares criterion in
regression (Rousseeuw, 1984).Without loss of generality, instead of taking themedian squaredMahalanobis distancewe
could have taken a trimmed sum. This would have led to a generalization of the LTS estimator to time series (Rousseeuw
and Van Driessen, 1999).
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Fig. 1. Minimum distance outside the subset dmin(m) for the simulated credit spreads. The fact that dmin(m) increases almost monotonically as the size of
the subset increases and reaches its maximum at the end of the search is an indication of the absence of masking. The dotted lines give a 95% confidence
interval.

5. Subset Sb+1. We add to Sb∗ the unit with the lowest squared Mahalanobis distance obtained considering the parameter
vector estimated on Sb∗.

6. Progressing in the search, subset Sm>b+1. Sm is made up by them units with the lowest squaredMahalanobis distances. In
order to compute these distances, we exploit the parameter vector Θ̂Sm−1 estimated considering them−1 units belonging
to Sm−1. Given that in progressing the search from m − 1 to m more than one unit can join the subset, for each m we
completely rerun the Kalman filter.

At each step m of the search we monitor the minimum distance of units not belonging to the subset dmin(m) and we
exploit envelopes to make inference on outliers (Riani and Atkinson, 2007).

In the next section we apply our forward search framework to a simulated dataset explaining how to compute dmin(m)
and the envelopes.

4. The forward search applied to simulated credit spreads

We apply the state space representation described in the previous sections to generate N = 4 paths of 60 units each,
of the Vasicek one factor model with parameter vectorΘsim = (0.03, 0.6, 0.01,−0.002, 0.0081, 0.0090, 0.0012, 0.0091)′.
We chose this set of parameters because they can be representative of real time series. Proceeding in this way we obtain
four time series corresponding to daily credit spreads at maturities: 3, 5, 7 and 10 years. We stress that we consider so few
time series because only on them are there actively traded interest rates. Starting from them, we are able to estimate model
parameters which allow us to obtain, through Eq. (6), the intensity curve for all maturities τ .

Following the search as described in the previous section, we concentrate, first of all, on monitoring the distances dt,Sm
for each unit along the search. The goal pursued through this analysis is to highlight influential units (trajectories which
change considerably during the search), masked multiple outliers or jumps (set of trajectories which have a very similar
atypical behavior along the search, but at the end are completely mixed with the remaining observations) and isolated
outliers (trajectories very different from the majority of the observations).

Starting from dt,Sm = υ ′
tΣ

−1
Sm υt , we focus on the minimum distance of units outside the subset

dmin(m) = min[dt,Sm ], t ∉ Sm. (21)

As in standard regression (Atkinson and Riani, 2000), this distance increases progressively along the search and its
slope is higher in the last few steps. The monitoring of dmin(m) helps to have an idea about potential outliers. We expect
distances at the end of the search to be large, but this definition of large is subjective, without reference to any null
distribution. For this reason, we extend to our setting the envelope procedure for outlier detection introduced by Riani
et al. (2009) for i.i.d. observations. The idea underlying the generation of envelopes is to find theoretical boundaries for
the quantities monitored during the forward search, that allow for simultaneous inference on outliers. We try to achieve
this goal by generating a large number of paths and verifying whether observations stay within bounds obtained from such
generations.

Using the parameter vector Θsim, we generate paths for each subset size m obtaining a distribution of dmin(m) from
which we can extract percentiles. Lower and upper envelopes are the collection of these point-wise values which we use as
a threshold for the detection of outliers.

Fig. 1 shows the monitoring of the minimum distance outside the subset dmin(m) (solid line) together with a 95%
confidence interval (dotted lines). In this case the trajectory is well inside the envelopes along the search and indicates
the absence of atypical observations. In the presence of an isolated outlier we expect to find a trajectory which lies inside
the envelopes and goes out in the final step. On the other hand, in the presence of multiple outliers (as we shall see
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Table 1
Vector ofΘ Vasicek one factor model parameters to simulate envelopes.

θ k σ ν σGtG′
t ,1

σGtG′
t ,2

σGtG′
t ,3

σGtG′
t ,4

Θsim 0.03 0.6 0.01 −0.002 0.0081 0.0090 0.0012 0.0091
Θ2 0.10 0.5 0.3 −0.001 0.0705 0.0510 0.0014 0.0196
Θ3 0.07 0.2 0.001 −0.2 0.0826 0.9587 0.0751 0.6502

Fig. 2. Envelopes at confidence level 95% starting from different parameter vectors. Analytical envelopes (based on the order statistics approximation)
share substantially the same shape as envelopes obtained through Monte Carlo simulations generated from different parameter sets.

in the next section with a real data example), we expect to observe a trajectory of the minimum distance which lies
above the envelopes in the final part of the search but, due to the masking effect, goes back inside in the final step. If
there is a misspecification in the model, or for example if the errors are non-normal, we expect that the trajectory of the
minimum deletion residual is persistently above the upper threshold. Finally, a misspecification combined with outliers is
likely to produce a trajectory which is persistently above the confidence levels and at the end is characterized by upward
jumps.

It is interesting to remark that the shape of the envelopes obtained through the above mentioned procedure is virtually
unaffected by the parameter vector Θ from which we simulate. In other words, starting from different parameter vectors,
such as those given in Table 1, we obtain the same envelope structure as is shown in Fig. 2.

In addition, considering that the above mentioned Monte Carlo procedure is time consuming, we also tried to exploit
the order statistic approximation proposed by Riani et al. (2009) for squared Mahalanobis distances in the presence of i.i.d
observations. Fig. 2 shows that this technique in the case of time series data can be used just to have a rough approximation.
For this reason, in what follows, we rely on envelopes obtained through Monte Carlo simulations.

In order to check whether our procedure is really capable to detect outliers, we contaminate units 25 to 27 in 1 and 2
year credit spread dataset. We perform the whole forward search on the contaminated dataset. The top left panel of Fig. 3
shows the monitoring of the trajectories associated with the distances dt,Sm . This panel clearly shows that the trajectories
associated with the contaminated units are very different from those of the other units. In order to establish whether
these units can be considered atypical, we plot on the top right panel the curve of dmin(m) together with a confidence
envelope based on all the observations. This panel shows that even if the final value of dmin(m) is inside the envelope
at the final step its trajectory is well above the upper confidence envelope in the previous steps. In order to understand
how many outliers are present in the data we need to resuperimpose the confidence bands using a reduced number of
observations. The bottom left panel of Fig. 3 shows that if we consider an envelope based on T − 3 units, the trajectory of
the minimum deletion residual always lies inside the confidence band. The bottom right panel of Fig. 3 shows that if we
consider an envelope based on T − 2 units the curve starts going outside the envelope in the final step. In other words,
when the first contaminated unit enters the subset, there is a huge increase in dmin(m). This leads us to declare three
outliers.

It is interesting to notice that the most important findings of our procedure are concentrated on the last steps of the
search. We carried out the analysis even without considering the block procedure described in previous sections and, apart
from the very beginning of the search, we obtained the same results as above. In addition, we carried out the same analysis
introducing contaminations at the beginning, at the end and in other positions of the time series and we obtained the same
findings. We notice that the forward search applied to this simulated dataset takes roughly 40 s with a Pentium V computer
and each simulation to construct the envelopes takes the same time.

In order to verify the effectiveness of our framework in a setting which is not obtained exploiting a simulation algorithm
based on i.i.d. realizations, in the next section we apply the forward search to real market financial time series.
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Fig. 3. Forward analysis of the contaminated data. (a) Monitoring of the distances dt,Sm . There are three trajectories which seem to be very different from
the others. (b) Monitoring of dmin(m)with an envelope based on T observations. (c) Monitoring of dmin(m) using an envelope based on T − 3 observations.
(d) Monitoring of dmin(m) using an envelope based on T − 2 observations. When the first contaminated unit enters the subset, there is a huge increase in
dmin(m).

Fig. 4. Spanish daily credit spreads from January 2010 to April 2010. Spreads are computed as difference between government bond interest rates for
maturities 3, 5, 7, 10 years and swap rates.

5. The forward search applied to Spanish credit spreads

In this section we consider the time series of Spanish daily credit spreads from January 2010 to April 2010 as plotted in
Fig. 4. These spreads are obtained as difference between government bond interest rates for maturities 3, 5, 7, 10 years and
swap rates.

Fig. 4 shows that at the end of the time series there are some upward and downward peaks which are probably due to
rumors about the Spanish financial situation after the Greek crisis. Given that outlier detection improves forecasting, it is
interesting to verify whether some units can be considered as atypical and make appropriate inferences.
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Fig. 5. Monitoring of dmin(m) for Spanish credit spreads for Vasicek and CIR, one and two factor models, with 95% confidence bands. The observed curve
of minimum squared Mahalanobis distance lies outside the upper 95% confidence level in the last part of the search but goes back inside the envelopes in
the final steps showing amasking phenomenon.

Fig. 5 shows themonitoring of theminimum squaredMahalanobis distance for Vasicek and CIR, one or two factormodels.
This figure shows that the trajectory of dmin(m) crosses the upper envelope in a persistent way in the last part of the search,
but in the final steps dmin(m) stayswithin the envelopes. This phenomenon is known asmasking . One of themain advantages
of the forward search is the effectiveness in detecting masked units. In order to further verify whether units which cross
envelopes can be considered outliers, we superimpose envelopes as we have described in the previous Section, confirming
what we have stated above.

Starting from Eq. (6) we can draw credit intensity curves by considering the parameter vector Θ̂ST−p∗ where p∗ is the
number of units declared as outliers. Furthermore, we can exploit forward search parameter estimates up to step T − p∗ to
build up lower and upper frontiers for the intensity credit curve. At each step of the search we have a vector of parameter
estimates. Then, we can use these estimates to obtain credit curves for all maturities τ (we concentrate on maturities:
{1, . . . , 10}). We repeat this procedure for all steps of the search obtaining a set of curves. For each annual node of the
curve we extract lower and upper values obtaining lower and upper boundaries as the collection of these point-wise values
as shown in Fig. 6 (Vasicek model), and in Fig. 7 (CIR model). At the same time, as shown through box plots, parameters
estimated along the search allow to show the dispersion of intensity at each maturity τ .

In both Figs. 6 and 7 the shape of the term structure is aligned to the relationship among credit spreads which, apart from
masked atypical observations, is increasing as function of maturity τ .

As correctly pointed out by a referee, the suggested approach can be applied on line in the sense that when a new
observation arises, the new trajectory of theminimum deletion residual can be recalculated taking advantage in an efficient
way of the envelopes previously calculated. An observation that can be flagged permanently as an outlier after this has
become evident at a certain significance level.

6. Concluding remarks

In this paper we combine different lines of research in the context of term structure of default intensity. For the first
time in the literature, relying on squared Mahalanobis distance as a measure to rank observations, we extend the forward
search to multivariate time series based on the Kalman filter analysis. We apply our general framework to the special issue
of estimating default intensity exploiting Vasicek and CIR one and two factor models.
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Fig. 6. Spanish term structure of default intensity: Vasicek one and two factor models. In the top left panel Vasicek 1 lower, median and upper percentiles
(of the default intensity curve obtained considering the parameter vectors estimated along the search) are compared. In the top right panel box plots for
maturities τ = {1, . . . , 10} are presented. The bottom plots show the same analysis for the Vasicek two factor model.

In order to find distributional boundaries for inferences on outliers we introduce a procedure for computing envelopes.
This procedure is based on random simulations of the state space model. We show that these envelopes are virtually
independent of the simulation parameter set and we compare them to the analytical envelopes obtained through the order
statistics procedure of Riani et al. (2009).

We apply the forward search to both simulated and real market datasets. We concentrate on the simulated environment
in order to analyze the main features of our framework. We start from an uncontaminated setting, then we introduce
contaminations to verify whether our approach is effective in detecting atypical observations. Then, we apply the forward
search to Spanish credit spread time series, concentrating on the period between January 2010 and April 2010 (after the
Greek financial crisis). Envelope analysis allows us to detect atypical units highlighting influential masked observations.

Considering parameter estimates at each step of the search,webuild upnot only a uniquedefault intensity termstructure,
as is usual in the literature, but also an interval within which default intensity is likely to stay.

This work is the first step in multivariate time series forward search analysis. Further research needs to be devoted to
deal with more sophisticated models and a greater effort will be required to obtain universal techniques for constructing
envelopes without resorting to Monte Carlo simulations.
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Fig. 7. Spanish term structure of default intensity: CIR one and two factor models. In the top left panel CIR one lower, median and upper percentiles (of the
default intensity curve obtained considering the parameter vectors estimated along the search) are compared. In the top right panel box plots formaturities
τ = {1, . . . , 10} are presented. The bottom plots show the same analysis for the CIR two factor model.

Appendix. Supplementary data

Supplementary material related to this article can be found online at doi:10.1016/j.csda.2011.03.007.
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